Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene-deletion strains.
نویسندگان
چکیده
Incorporation of strain-specific synthetic DNA tags into yeast Saccharomyces cerevisiae gene-deletion strains has enabled identification of gene functions by massively parallel growth rate analysis. However, it is important to confirm the sequences of these tags, because mutations introduced during construction could lead to significant errors in hybridization performance. To validate this experimental system, we sequenced 11,812 synthetic 20-mer molecular bar codes and adjacent sequences (>1.8 megabases synthetic DNA) by pyrosequencing and Sanger methods. At least 31% of the genome-integrated 20-mer tags contain differences from those originally synthesized. However, these mutations result in anomalous hybridization in only a small subset of strains, and the sequence information enables redesign of hybridization probes for arrays. The robust performance of the yeast gene-deletion dual oligonucleotide bar-code design in array hybridization validates the use of molecular bar codes in living cells for tracking their growth phenotype.
منابع مشابه
Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae
The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...
متن کاملDeciphering the Genic Basis of Yeast Fitness Variation by Simultaneous Forward and Reverse Genetics.
The budding yeast Saccharomyces cerevisiae is the best studied eukaryote in molecular and cell biology, but its utility for understanding the genetic basis of phenotypic variation in natural populations is limited by inefficient association mapping due to strong and complex population structure. To overcome this challenge, we generated genome sequences for 85 strains and performed a comprehensi...
متن کاملThe F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae.
The maintenance of DNA replication fork stability under conditions of DNA damage and at natural replication pause sites is essential for genome stability. Here, we describe a novel role for the F-box protein Dia2 in promoting genome stability in the budding yeast Saccharomyces cerevisiae. Like most other F-box proteins, Dia2 forms a Skp1-Cdc53/Cullin-F-box (SCF) E3 ubiquitin-ligase complex. Sys...
متن کاملProbing Nucleosome Function: A Highly Versatile Library of Synthetic Histone H3 and H4 Mutants
Nucleosome structural integrity underlies the regulation of DNA metabolism and transcription. Using a synthetic approach, a versatile library of 486 systematic histone H3 and H4 substitution and deletion mutants that probes the contribution of each residue to nucleosome function was generated in Saccharomyces cerevisiae. We probed fitness contributions of each residue to perturbations of chromo...
متن کاملIdentification of Saccharomyces cerevisiae Genes Whose Deletion Causes Synthetic Effects in Cells with Reduced Levels of the Nuclear Pif1 DNA Helicase
The multifunctional Saccharomyces cerevisiae Pif1 DNA helicase affects the maintenance of telomeric, ribosomal, and mitochondrial DNAs, suppresses DNA damage at G-quadruplex motifs, influences the processing of Okazaki fragments, and promotes breakage induced replication. All of these functions require the ATPase/helicase activity of the protein. Owing to Pif1's critical role in the maintenance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 30 شماره
صفحات -
تاریخ انتشار 2004